COMPUTATION OF NONSTATIONARY HEAT EXCHANGE
WITH LAMINAR FLUID FLOW IN PIPES OF
ANNULAR CROSS-SECTION

V. V. Kashirnikov and A, A, Ryadno UDC 532.572.2:506.24

An analytic computation method is presented for the temperature field of a viscous incom-
pressible fluid in the case oflaminar flowin a ring-like cylindrical channel of arbitrary pro-
file.

The determination of nonstationary temperature field of a viscous incompressible fluid, in the case of
its laminar flow being in an annular cylindrical pipe of arbitrary cross-section, can be reducedto the solu-
tion of the energy equation [1]
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and Eq. (1) becomes
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1. Boundary Conditions of the First Kind. The Galerkin method is used to solve Eq. (2). The bound-
ary and initial conditions are as follows:
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An appropriate solution is sought in a series form
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where ¢ is a complete system of orthogonal functions which satisfy the conditions
Pn (0! VP, Z) = CPn(l, b, 2) = 0.
The coefficients alr\f (1) can be found from the system of equations [4]
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The initial values for the above system are found by expanding the initial temperature distribution into a
series of orthogonal coordinate functions ¢n.

The finding of a solution of the system (3) of ordinary linear differential equations does not present
any difficulties.

2. Boundary Conditions of the 3rd Kind. In this case the boundary conditions are given by
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The solution is constructed as follows:
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where the functions 6i, i = 1,2, satisfying the conditions
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are sought in the form
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By satisfying in the mean boundary conditions (5), a system of 2N algebraic equations is obtained for the
2N? unknown aX(r), 1 =1,2,n=1,2,3,...,N.

By using these linear equations some coefficients are now expressed in terms of others, new functions
are adopted as coordinate functions and the Galerkin algorithm is applied; in this manner a system is ob-
tained of ordinary differential equations for the coefficients of the expansion.

The Cauchy problem thus obtained for linear differential equations can easily be solved,

The construetion of coordinate functions is illustrated by considering problems with boundary condi-
tions of the 3rd kind.

Suppose that it is required to determine the temperature field for a laminar steady flow of a viscous
incompressible fluid in a pipe of annular cross-section and under symmetrical boundary conditions which
are independent of ¥, For simplicity, one sets p;(¢¥) =1; py(¥) = 2. Having substituted the new variables
one finds that the boundary conditions are of the form
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The solution is found in the form of a truncated series
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These functions were obtained by a Schmidt orthogonalization of the polynomials ¢, = (£-1)2 M ang

vy =& T 1 respectively,

The series (8) with the new coordinate functions satisfies in the mean the conditions (7) and is as fol-
lows:
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To show how this method can be implemented the following boundary-value problem is considered:
the energy equation in dimensionless variables is of the form
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The ir_1itia1 conditions are as follows 6(0, z, § =0,
The boundary conditions are as follows:
(1, z, Foy=1,
8(0, z, Fo)=1 (0<2 Fo< o),
8( 0, F))=0 (0<E<], 0<Fo< o).

The solution is sought in the form
2
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where H(Fo), H(z) are the Heaviside unit functions and

P €)= (1—-0E, ¢2(§)=(1~§)§2———; b @),

8
fi(2) = zexp(—2), f2 (2) = 2 exp(—22) —% fL@@).
The functlons ¥n(8) and fi(z) are obtained by the Schmidt orthogonalization of the systems ¢,(¢) = (1~ H
fi(z) =z exp(—kz) n,k=1,2,3,

In accordance with the decreased algorithm one obtaing the following expressions for the coefficients
of the series (9): v

ayy =— 1,74 [1 —exp (&, Fo)] — 1.33.107* [1 —exp (A, Fo)];
Oy = —0.28 [1 —exp (A, Fo)] +-1.15-1072 [1 — exp (A, Fo)[;
a3y = — 35.9 [exp (Ay Fo) — 1] —5.36- 1072 [exp (A, Fo) —~ 1];
@y = — 69.6 [exp (A; Fo) — 1] + 11.56 [exp (A, Fo) — 17;
A, = —1L5; A, = —280.5; Ay = —136; A, = — 814,
1t is noticed that in [3] systems can be found of orthonormal functions for a large number of regions which

one encounters when solving boundary-value problems of various types. In [4] convergence and stability is
proved of the approximating system of differential equations for the Galerkin method.

In the case of stationary problems a,) can be considered as indetermined numerical coefficients and
can be determined from a system of linear algebraic equations.
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Convergence of the Galerkin method for elliptic equations was proved in [2].

The proposed method can be used to solve heat-exchange problems in solid bodies and to compute the
veloeity field of one-dimensional motion of viscous incompressible fluid; it is known that the latter is
reducible to an equation of the heat-conduction type.

NOTATION

T(r, ¢, x,t) is the fluid temperature;
W(r, ¢, t) is the axial component of fluid flow velocity;
AT is the Laplace operator in cylindrical coordinates;
F(r, ¢, x,t) is the function characterizing the intensity of heat source;
01(@), py(@) are the equations of inner and outer boundary contours of the channel;
en€, ¥, 2) is the system of orthogonal coordinate functions;
Bi is the Biot number;
Fo is the Fourier number;
Pe is the Peclet number;
H is the Heaviside unit function;
r, ¢ X are the cylindrical coordinates;
T is the time;
& U,z are the new independent variables,
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